ORANGE - Grade 4

- Common Core Standards from previous grades are reviewed in early Cycles.
- Common Core Standards from the current grade are reviewed in later Cycles.
Basic Facts
Whole Numbers
Place Value
Multiplication \& Division
Fractions 1
Fractions 2
Decimals
Basic Operations
Algebra
Time \& Money
Measurement 1
Measurement 2
Geometry 1
Geometry 2
Data
Vocabulary \& Symbols
Problem Solving

Operations and Algebraic Thinking

4.0A	
$\begin{gathered} \text { Cycle } \\ 7 \end{gathered}$	$\underset{8}{\text { Cycle }}$
-	\bigcirc
$\begin{gathered} \hline \text { Cycle } \\ 7 \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { Cycle } \\ 8 \end{gathered}$
$\begin{gathered} \text { Cycle } \\ 7 \end{gathered}$	$\begin{gathered} \text { Cycle } \\ 8 \end{gathered}$
-	O

Cy

1
Understand a fraction $1 / b$ as the quantity formed by 1 part when a whole is partitioned into b equal parts; understand a fraction a / b as the quantity formed by a parts of size $1 / b$ Understand a fraction as a number on the number line; represent fractions on a number line diagram.
a) Represent a fraction $1 / b$ on a number line diagram by defining the interval from 0 to 1 as the whole and partitioning it into b equal parts. Recognize that each part has size $1 / b$ and that the endpoint of the part based at 0 locates the number $1 / b$ on the number line. b) Represent a fraction a / b on a number line diagram by marking off a lengths $1 / b$ from 0 . Recognize that the resulting interval has size a / b and that its endpoint locates the number a / b on the number line.
Explain equivalence of fractions in special cases, and compare fractions by reasoning about their size.
a) Understand two fractions as equivalent (equal) if they are the same size, or the same point on a number line.
b) Recognize and generate simple equivalent fractions, e.g., $1 / 2=2 / 4,4 / 6=2 / 3$. Explain why the fractions are equivalent, e.g., by using a visual fraction model.
3
c) Express whole numbers as fractions, and recognize fractions that are equivalent to whole numbers. Examples: Express 3 in the form $3=3 / 1$; recognize that $6 / 1=6$; locate $4 / 4$ and 1 at the same point of a number line diagram.
d) Compare two fractions with the same numerator or the same denominator by reasoning about their size. Recognize that comparisons are valid only when the two fractions refer to the same whole. Record the results of comparisons with the symbols >, =, or <, and justify the conclusions, e.g., by using a visual fraction model.

Number and operations - Fractions								4.NF	
Extend understanding of fraction equivalence and ordering		Cycle 1	$\begin{gathered} \text { Cycle } \\ 2 \end{gathered}$	Cycle	Cycle	$\begin{gathered} \text { Cycle } \\ 5 \end{gathered}$	Cycle 6	Cycle	Cycle 8
1	Explain why a fraction a / b is equivalent to a fraction $(\mathrm{n} \times \mathrm{a}) /(\mathrm{n} \times \mathrm{b})$ by using visual fraction models, with attention to how the number and size of the parts differ even though the two fractions themselves are the same size. Use this principle to recognize and generate equivalent fractions.		-						
2	Compare two fractions with different numerators and different denominators, e.g., by creating common denominators or numerators, or by comparing to a benchmark fraction such as $1 / 2$. Recognize that comparisons are valid only when the two fractions refer to the same whole. Record the results of comparisons with symbols >, =, or <, and justify the conclusions, e.g., by using a visual fraction model.		-		-		\bigcirc		
Build fractions from unit fractions by applying and extending previous understandings of operations on whole numbers.									
3	Understand a fraction a / b with $\mathrm{a}>1$ as a sum of fractions $1 / \mathrm{b}$. a) Understand addition and subtraction of fractions as joining and separating parts referring to the same whole. b) Decompose a fraction into a sum of fractions with the same denominator in more than one way, recording each decomposition by an equation. Justify decompositions, e.g., by using a visual fraction model. Examples: $3 / 8=1 / 8+1 / 8+1 / 8 ; 3 / 8=1 / 8+2 / 8 ; 21 / 8=1$ $+1+1 / 8=8 / 8+8 / 8+1 / 8$. c) Add and subtract mixed numbers with like denominators, e.g., by replacing each mixed number with an equivalent fraction, and/or by using properties of operations and the relationship between addition and subtraction. d) Solve word problems involving addition and subtraction of fractions referring to the same whole and having like denominators, e.g., by using visual fraction models and equations to represent the problem.			-		\bigcirc		-	
4	Apply and extend previous understandings of multiplication to multiply a fraction by a whole number. a) Understand a fraction a / b as a multiple of $1 / \mathrm{b}$. For example, use a visual fraction model to represent $5 / 4$ as the product $5 \times(1 / 4)$, recording the conclusion by the equation $5 / 4=5 \times(1 / 4)$. b) Understand a multiple of a / b as a multiple of $1 / \mathrm{b}$, and use this understanding to multiply a fraction by a whole number. For example, use a visual fraction model to express $3 \times(2 / 5)$ as $6 \times(1 / 5)$, recognizing this product as $6 / 5$. (In general, $n \times(a / b)=(n$ \times a)/b.) c) Solve word problems involving multiplication of a fraction by a whole number, e.g., by using visual fraction models and equations to represent the problem. For example, if each person at a party will eat $3 / 8$ of a pound of roast beef, and there will be 5 people at the party, how many pounds of roast beef will be needed? Between what two whole numbers does your answer lie?				-		\bigcirc		-

Number and operations - Fractions								4.NF	
Understand decimal notaion for fractions, and compare decimal fractions		Cycle 1	$\begin{array}{\|c\|} \hline \text { Cycle } \\ 2 \end{array}$	$\begin{array}{\|c\|} \hline \text { Cycle } \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { Cycle } \\ 4 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { Cycle } \\ 5 \end{array}$	$\begin{array}{\|c\|} \hline \text { Cycle } \\ \hline \end{array}$	$\begin{gathered} \text { Cycle } \\ 7 \end{gathered}$	Cycle 8
5	Express a fraction with denominator 10 as an equivalent fraction with denominator 100, and use this technique to add two fractions with respective denominators 10 and 100. For example, express $3 / 10$ as $30 / 100$, and add $3 / 10+4 / 100=34 / 100$.				\bigcirc	\bigcirc			
6	Use decimal notation for fractions with denominators 10 or 100. For example, rewrite 0.62 as $62 / 100$; describe a length as 0.62 meters; locate 0.62 on a number line diagram.	\bigcirc	-	\bigcirc				-	
7	Compare two decimals to hundredths by reasoning about their size. Recognize that comparisons are valid only when the two decimals refer to the same whole. Record the results of comparisons with the symbols >, $=$, or <, and justify the conclusions, e.g., by using a visual model.						\bigcirc		\bigcirc

Me	surement and Data							3.1	
Solve problems involving measurement and estimation of intervals of time, liquid volumes, and mases of objects.		$\begin{gathered} \text { Cycle } \\ 1 \end{gathered}$	$\begin{gathered} \text { Cycle } \\ 2 \end{gathered}$	$\begin{gathered} \text { Cycle } \\ 3 \end{gathered}$	$\begin{gathered} \text { Cycle } \\ 4 \end{gathered}$	$\begin{gathered} \text { Cycle } \\ 5 \end{gathered}$	$\begin{gathered} \text { Cycle } \\ 6 \end{gathered}$	Cycle 7	Cycle 8
1	Tell and write time to the nearest minute and measure time intervals in minutes. Solve word problems involving addition and subtraction of time intervals in minutes, e.g., by representing the problem on a number line diagram.	\bigcirc	\bigcirc		\bigcirc				-
2	Measure and estimate liquid volumes and masses of objects using standard units of grams (g), kilograms (kg), and liters (I). Add, subtract, multiply, or divide to solve onestep word problems involving masses or volumes that are given in the same units, e.g., by using drawings (such as a beaker with a measurement scale) to represent the problem.	\bigcirc	\bigcirc	\bigcirc					
Represent and interpret data.		Cycle	$\begin{gathered} \text { Cycle } \\ 2 \end{gathered}$	$\begin{gathered} \text { Cycle } \\ 3 \end{gathered}$	$\begin{gathered} \text { Cycle } \\ 4 \end{gathered}$	$\begin{gathered} \text { Cycle } \\ 5 \end{gathered}$	$\begin{gathered} \text { Cycle } \\ 6 \end{gathered}$	$\begin{gathered} \text { Cycle } \\ 7 \end{gathered}$	$\begin{gathered} \hline \text { Cycle } \\ 8 \end{gathered}$
3	Draw a scaled picture graph and a scaled bar graph to represent a data set with several categories. Solve one- and two-step "how many more" and "how many less" problems using information presented in scaled bar graphs. For example, draw a bar graph in which each square in the bar graph might represent 5 pets	\bigcirc	-			\bigcirc	-		
4	Generate measurement data by measuring lengths using rulers marked with halves and fourths of an inch. Show the data by making a line plot, where the horizontal scale is marked off in appropriate units-whole numbers, halves, or quarters.			\bigcirc					

Measurement and Data							3.MD		
Geometric measurement: understand concepts of area and relate area to multiplicaiton and to addition.		$\begin{array}{\|c} \text { Cycle } \\ 1 \end{array}$	$\begin{gathered} \text { Cycle } \end{gathered}$	$\begin{array}{\|c} \text { Cycle } \\ 3 \end{array}$	$\begin{gathered} \text { Cycle } \\ 4 \end{gathered}$	$\underset{5}{\text { Cycle }}$	$\begin{gathered} \text { Cycle } \\ 6 \end{gathered}$	$\begin{gathered} \text { Cycle } \\ 7 \end{gathered}$	Cycle 8
5	Recognize area as an attribute of plane figures and understand concepts of area measurement. a) A square with side length 1 unit, called "a unit square," is said to have "one square unit" of area, and can be used to measure area. b) A plane figure which can be covered without gaps or overlaps by n unit squares is said to have an area of n square units.								
6	Measure areas by counting unit squares (square cm , square m , square in, square ft , and improvised units).								
7	Relate area to the operations of multiplication and addition. a) Find the area of a rectangle with whole-number side lengths by tiling it, and show that the area is the same as would be found by multiplying the side lengths. b) Multiply side lengths to find areas of rectangles with whole-number side lengths in the context of solving real-world and mathematical problems, and represent whole-number products as rectangular areas in mathematical reasoning. c) Use tiling to show in a concrete case that the area of a rectangle with whole-number side lengths a and $b+c$ is the sum of $a \times b$ and $a \times c$. Use area models to represent the distributive property in mathematical reasoning. d) Recognize area as additive. Find areas of rectilinear figures by decomposing them into non-overlapping rectangles and adding the areas of the non-overlapping parts, applying this technique to solve real-world problems.	\bigcirc		\bigcirc					
Geometric measurement: recognize perimeter as an attribute of plane figures and distinguish between linear and area measures.		$\begin{array}{\|c} \text { Cycle } \\ 1 \end{array}$	Cycle	$\begin{array}{\|c} \text { Cycle } \\ 3 \end{array}$	$\begin{gathered} \text { Cycle } \\ 4 \end{gathered}$	$\underset{5}{\text { Cycle }}$	$\underset{6}{\text { Cycle }}$	$\begin{gathered} \text { Cycle } \\ 7 \end{gathered}$	$\begin{gathered} \text { Cycle } \\ 8 \end{gathered}$
8	Solve real-world and mathematical problems involving perimeters of polygons, including finding the perimeter given the side lengths, finding an unknown side length, and exhibiting rectangles with the same perimeter and different areas or with the same area and different perimeters.		\bigcirc		\bigcirc				

Measurement and Data 4.MD									
Solve problems involving measurement and estimation of intervals of time, liquid volumes, and mases of objects.		$\underset{\substack{\text { cycle } \\ 1}}{ }$	$\underset{\substack{\text { cycle } \\ 2}}{ }$	${ }_{\text {cycle }}$	Cycle	${ }_{\text {cycle }}$	cycle 6	${ }_{\substack{\text { cycle } \\ 7}}$	${ }_{8}^{\text {cycle }}$
1	Know relative sizes of measurement units within one system of units including km, m, $\mathrm{cm} ; \mathrm{kg}, \mathrm{g} ; \mathrm{lb}, \mathrm{oz} . ; \mathrm{l}, \mathrm{ml} ; \mathrm{hr}, \mathrm{min}, \mathrm{sec}$. Within a single system of measurement, express measurements in a larger unit in terms of a smaller unit. Record measurement equivalents in a two-column table. For example, know that 1 ft is 12 times as long as 1 in . Express the length of a 4 ft snake as 48 in . Generate a conversion table for feet and inches listing the number pairs (1, 12), (2, 24), (3, 36), ...				\bigcirc	-		\bigcirc	-
2	Use the four operations to solve word problems involving distances, intervals of time, liquid volumes, and masses of objects, and money.including problems involving simple fractions or decimals, and problems that require expressing measurements given in a larger unit in terms of a smaller unit. Represent measurement quantities using diagrams such as number line diagrams that feature a measurement scale		\bigcirc		\bigcirc	\bigcirc	-	-	-
Represent and interpret data.		${ }_{\text {cycle }}$	Cycle	Cycle	Cycle	${ }_{\text {cycle }}$	${ }_{\text {Cycle }}$	${ }_{\text {cycle }}$	Cycle_{8}
3	Apply the area and perimeter formulas for rectangles in real-world and mathematical problems. For example, find the width of a rectangular room given the area of the flooring and the length, by viewing the area formula as a multiplication equation with an unknown factor.					\bigcirc	-	-	\bigcirc
4	Make a line plot to display a data set of measurements in fractions of a unit (1/2, 1/4, 1/8). Solve problems involving addition and subtraction of fractions by using information presented in line plots. For example, from a line plot find and interpret the difference in length between the longest and shortest specimens in an insect collection							-	
Geometric measurement: understand concepts of angles and measure angles.		Cycle	Cycle	Cycle	Cycle	Cycle	${ }_{6}^{\text {Cycle }}$	Cycle	${ }_{8}^{\text {Cycle }}$
5	Recognize angles as geometric shapes that are formed wherever two rays share a common endpoint, and understand concepts of angle measurement: a) An angle is measured with reference to a circle with its center at the common endpoint of the rays, by considering the fraction of the circular arc between the points where the two rays intersect the circle. An angle that turns through $1 / 360$ of a circle is called a "one-degree angle," and can be used to measure angles. b) An angle that turns through n one-degree angles is said to have an angle measure of n degrees.								\bigcirc
6	Measure angles in whole-number degrees using a protractor. Sketch angles of specified measure.					-	-	-	
7	Recognize angle measure as additive. When an angle is decomposed into non-overlapping parts, the angle measure of the whole is the sum of the angle measures of the parts. Solve addition and subtraction problems to find unknown angles on a diagram in real-world and mathematical problems, e.g., by using an equation with a symbol for the unknown angle measure.								\bigcirc

Geometry		3.G							
Reason with shapes and their attributes		$\begin{gathered} \text { Cycle } \\ 1 \end{gathered}$	$\begin{gathered} \text { Cycle } \\ 2 \end{gathered}$	$\begin{gathered} \text { Cycle } \\ 3 \end{gathered}$	$\begin{gathered} \text { Cycle } \\ 4 \end{gathered}$	$\begin{gathered} \text { Cycle } \\ 5 \end{gathered}$	$\begin{gathered} \text { Cycle } \\ 6 \end{gathered}$	$\begin{gathered} \text { Cycle } \\ 7 \end{gathered}$	$\begin{gathered} \hline \text { Cycle } \\ 8 \end{gathered}$
1	Understand that shapes in different categories (e.g., rhombuses, rectangles, and others) may share attributes (e.g., having four sides), and that the shared attributes can define a larger category (e.g., quadrilaterals). Recognize rhombuses, rectangles, and squares as examples of quadriaterals, and draw examples of quadrilaterals that do not belong to any of these subcategories.	-	-	-					
2	Partition shapes into parts with equal areas. Express the area of each part as a unit fraction of the whole. For example, partition a shape into 4 parts with equal area, and describe the area of each part as $1 / 4$ of the area of the shape.								

