PLUM - Grade 3

- Common Core Standards from previous grades are reviewed in early Cycles.
- Common Core Standards from the current grade are reviewed in later Cycles.

Basic Facts

Whole Numbers
Place Value
Multiplication \& Division
Fractions 1
Fractions 2
Basic Operations
Algebra
Time \& Money
Measurement 1
Measurement 2
Geometry 1
Geometry 2
Data
Vocabulary \& Symbols
Problem Solving

Operations and Algebraic Thinking

Represent and solve problems involving addition and subtraction.		Cycle	Cycle	$\begin{array}{\|c\|} \hline \text { Cycle } \\ 3 \end{array}$	Cycle	$\begin{gathered} \text { Cycle } \\ 5 \end{gathered}$	$\begin{gathered} \text { Cycle } \\ 6 \end{gathered}$	Cycle	$\begin{gathered} \text { Cycle } \\ 8 \end{gathered}$
1	Use addition and subtraction within 100 to solve one- and two-step word problems involving situations of adding to, taking from, putting together, taking apart, and comparing, with unknowns in all positions, e.g., by using drawings and equations with a symbol for the unknown number to represent the problem.	\bigcirc	\bigcirc						
Add and subtract within 20		Cycle 1	$\begin{gathered} \text { Cycle } \\ 2 \end{gathered}$	$\begin{array}{\|c} \text { Cycle } \\ 3 \end{array}$	$\begin{gathered} \text { Cycle } \\ 4 \end{gathered}$	$\begin{gathered} \text { Cycle } \\ 5 \end{gathered}$	$\begin{gathered} \text { Cycle } \\ 6 \end{gathered}$	Cycle	${ }_{\text {Cycle }}$
2	Fluently add and subtract within 20 using mental strategies. By end of Grade 2, know from memory all sums of two one-digit numbers.	\bigcirc	-	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
Work with equal groups of objects to gain foundaitons for multiplication		Cycle 1	$\begin{gathered} \text { Cycle } \\ 2 \end{gathered}$	$\begin{gathered} \text { Cycle } \\ 3 \end{gathered}$	Cycle	$\begin{gathered} \text { Cycle } \\ 5 \end{gathered}$	$\begin{gathered} \text { Cycle } \\ 6 \end{gathered}$	Cycle	$\begin{gathered} \text { Cycle } \\ 8 \end{gathered}$
3	Determine whether a group of objects (up to 20) has an odd or even number of members, e.g., by pairing objects or counting them by 2 s ; write an equation to express an even number as a sum of two equal addends.								
4	Use addition to find the total number of objects arranged in rectangular arrays with up to 5 rows and up to 5 columns; write an equation to express the total as a sum of equal addends.	\bigcirc							

Operations and Algebraic Thinking

Represent and solve problems involving multiplication and division.		Cycle	$\begin{gathered} \text { Cycle } \\ 2 \end{gathered}$	$\begin{gathered} \text { Cycle } \\ 3 \end{gathered}$	Cycle	$\begin{gathered} \text { Cycle } \\ 5 \end{gathered}$	$\begin{gathered} \text { Cycle } \\ 6 \end{gathered}$	$\underset{\substack{\text { Cycle } \\ 7}}{ }$	Cycle 8
1	Interpret products of whole numbers, e.g., interpret 5×7 as the total number of objects in 5 groups of 7 objects each. For example, describe a context in which a total number of objects can be expressed as 5×7.	\bigcirc		\bigcirc					
2	Interpret whole-number quotients of whole numbers, e.g., interpret $56 \div 8$ as the number of objects in each share when 56 objects are partitioned equally into 8 shares, or as a number of shares when 56 objects are partitioned into equal shares of 8 objects each. For example, describe a context in which a number of shares or a number of groups can be expressed as $56 \div 8$.		0						
3	Use multiplication and division within 100 to solve word problems in situations involving equal groups, arrays, and measurement quantities, e.g., by using drawings and equations with a symbol for the unknown number to represent the problem.					\bigcirc	\bigcirc	\bigcirc	\bigcirc
4	Determine the unknown whole number in a multiplication or division equation relating three whole numbers. For example, determine the unknown number that makes the equation true in each of the equations $8 \times ?=48,5=\square \div 3,6 \times 6=$?.			\bigcirc	\bigcirc				

	lop understanding of fractions as numbers.	${ }_{\text {cycle }}$	${ }_{\text {cycle }}$	${ }_{\text {cycle }}$	Cycle	Cycle	${ }_{\text {cycle }}$	${ }_{\text {Cycle }}$	${ }_{8}^{\text {Cycle }}$
1	Understand a fraction $1 / b$ as the quantity formed by 1 part when a whole is partitioned into b equal parts; understand a fraction a / b as the quantity formed by a parts of size $1 / b$.					\bigcirc			
2	Understand a fraction as a number on the number line; represent fractions on a number line diagram. a) Represent a fraction $1 / b$ on a number line diagram by defining the interval from 0 to 1 as the whole and partitioning it into b equal parts. Recognize that each part has size $1 / b$ and that the endpoint of the part based at 0 locates the number $1 / b$ on the number line. b) Represent a fraction a / b on a number line diagram by marking off a lengths $1 / b$ from 0 . Recognize that the resulting interval has size a / b and that its endpoint locates the number a / b on the number line.				\bigcirc		-		-
3	Explain equivalence of fractions in special cases, and compare fractions by reasoning about their size. a) Understand two fractions as equivalent (equal) if they are the same size, or the same point on a number line. b) Recognize and generate simple equivalent fractions, e.g., $1 / 2=2 / 4,4 / 6=2 / 3$. Explain why the fractions are equivalent, e.g., by using a visual fraction model. c) Express whole numbers as fractions, and recognize fractions that are equivalent to whole numbers. Examples: Express 3 in the form $3=3 / 1$; recognize that $6 / 1=6$; locate $4 / 4$ and 1 at the same point of a number line diagram. d) Compare two fractions with the same numerator or the same denominator by reasoning about their size. Recognize that comparisons are valid only when the two fractions refer to the same whole. Record the results of comparisons with the symbols >, $=$, or <, and justify the conclusions, e.g., by using a visual fraction model.				\bigcirc		-	-	-

Measurement and Data								2.MD	
Measure and estimate lengths in standard units.		Cycle 1	$\begin{gathered} \text { Cycle } \\ 2 \end{gathered}$	Cycle	Cycle	$\begin{gathered} \text { Cycle } \\ 5 \end{gathered}$	$\begin{array}{\|c} \hline \text { Cycle } \\ 6 \end{array}$	Cycle	Cycle 8
1	Measure the length of an object by selecting and using appropriate tools such as rulers, yardsticks, meter sticks, and measuring tapes.	\bigcirc				\bigcirc			
2	Measure the length of an object twice, using length units of different lengths for the two measurements; describe how the two measurements relate to the size of the unit chosen.		\bigcirc						
3	Estimate lengths using units of inches, feet, centimeters, and meters			-					
4	Measure to determine how much longer one object is than another, expressing the length difference in terms of a standard length unit.				\bigcirc				
Relate addition and subtraction to length.		Cycle 1	$\begin{gathered} \text { Cycle } \\ 2 \end{gathered}$	$\begin{array}{\|c} \hline \text { Cycle } \\ 3 \end{array}$	$\begin{array}{\|c\|} \hline \text { Cycle } \\ \hline \end{array}$	$\begin{gathered} \text { Cycle } \\ 5 \end{gathered}$	$\begin{array}{\|c\|} \hline \text { Cycle } \\ 6 \end{array}$	$\begin{gathered} \hline \text { Cycle } \\ 7 \end{gathered}$	$\begin{gathered} \hline \text { Cycle } \\ 8 \end{gathered}$
5									
6	Represent whole numbers as lengths from 0 on a number line diagram with equally spaced points corresponding to the numbers $0,1,2, \ldots$, and represent whole-number sums and differences within 100 on a number line diagram.			\bigcirc			\bigcirc		
Work with time and money.		Cycle 1	$\begin{gathered} \text { Cycle } \\ 2 \\ \hline \end{gathered}$	$\begin{gathered} \text { Cycle } \\ 3 \end{gathered}$	Cycle	$\begin{array}{\|c\|} \hline \text { Cycle } \\ 5 \end{array}$	$\begin{array}{\|c\|} \hline \text { Cycle } \\ 6 \\ \hline \end{array}$	Cycle	$\begin{array}{\|c\|} \hline \text { Cycle } \\ \hline \end{array}$
7	Tell and write time from analog and digital clocks to the nearest five minutes, using a.m. and p.m. MA.7a. Know the relationships of time, including seconds in a minute, minutes in an hour, hours in a day, days in a week, a month, and a year; and weeks in a month and a year.	\bigcirc	\bigcirc	\bigcirc	\bigcirc				
8	Solve word problems involving dollar bills, quarters, dimes, nickels, and pennies, using $\$$ and ϕ symbols appropriately. Example: If you have 2 dimes and 3 pennies, how many cents do you have?								
Represent and interpret data.		Cycle 1	$\begin{gathered} \text { Cycle } \\ 2 \end{gathered}$	$\begin{array}{\|c\|} \hline \text { Cycle } \\ \hline \end{array}$	Cycle	$\begin{array}{\|c\|} \hline \text { Cycle } \\ 5 \end{array}$	$\begin{array}{\|c\|} \hline \text { Cycle } \\ \hline \end{array}$	Cycle	$\begin{gathered} \text { Cycle } \\ 8 \end{gathered}$
9	Generate measurement data by measuring lengths of several objects to the nearest whole unit, or by making repeated measurements of the same object. Show the measurements by making a line plot, where the horizontal scale is marked off in wholenumber units.			\bigcirc					
10	Draw a picture graph and a bar graph (with single-unit scale) to represent a data set with up to four categories. Solve simple put-together, take-apart, and compare problems, using information presented in a bar graph.	\bigcirc	\bigcirc						

Measurement and Data							3.MD		
Geometric measurement: understand concepts of area and relate area to multiplicaiton and to addition.		$\begin{gathered} \text { Cycle } \\ 1 \\ \hline \end{gathered}$	$\begin{array}{\|c} \text { Cycle } \\ 2 \end{array}$	$\begin{array}{\|c} \text { Cycle } \\ 3 \\ \hline \end{array}$	$\begin{gathered} \text { Cycle } \\ 4 \\ \hline \end{gathered}$	$\begin{gathered} \text { Cycle } \\ 5 \end{gathered}$	$\begin{gathered} \text { Cycle } \\ 6 \end{gathered}$	$\begin{gathered} \text { Cycle } \\ 7 \end{gathered}$	Cycle 8
5	Recognize area as an attribute of plane figures and understand concepts of area measurement. a) A square with side length 1 unit, called "a unit square," is said to have "one square unit" of area, and can be used to measure area. b) A plane figure which can be covered without gaps or overlaps by n unit squares is said to have an area of n square units.		-						
6	Measure areas by counting unit squares (square cm , square m , square in, square ft , and improvised units).		\bigcirc						
7	Relate area to the operations of multiplication and addition. a) Find the area of a rectangle with whole-number side lengths by tiling it, and show that the area is the same as would be found by multiplying the side lengths. b) Multiply side lengths to find areas of rectangles with whole-number side lengths in the context of solving real-world and mathematical problems, and represent whole-number products as rectangular areas in mathematical reasoning. c) Use tiling to show in a concrete case that the area of a rectangle with whole-number side lengths a and $b+c$ is the sum of $a \times b$ and $a \times c$. Use area models to represent the distributive property in mathematical reasoning. d) Recognize area as additive. Find areas of rectilinear figures by decomposing them into non-overlapping rectangles and adding the areas of the non-overlapping parts, applying this technique to solve real-world problems.				\bigcirc		\bigcirc	\bigcirc	\bigcirc
Geometric measurement: recognize perimeter as an attribute of plane figures and distinguish between linear and area measures.		$\begin{array}{\|c} \text { Cycle } \\ 1 \end{array}$	$\begin{array}{\|c} \text { Cycle } \\ 2 \end{array}$	$\begin{gathered} \text { Cycle } \\ 3 \end{gathered}$	$\begin{gathered} \text { Cycle } \\ 4 \end{gathered}$	$\underset{5}{\text { Cycle }}$	$\begin{gathered} \text { Cycle } \\ 6 \end{gathered}$	$\begin{gathered} \text { Cycle } \\ 7 \end{gathered}$	$\begin{gathered} \text { Cycle } \\ 8 \end{gathered}$
8	Solve real-world and mathematical problems involving perimeters of polygons, including finding the perimeter given the side lengths, finding an unknown side length, and exhibiting rectangles with the same perimeter and different areas or with the same area and different perimeters.			\bigcirc		\bigcirc		\bigcirc	\bigcirc

Geometry		2.G							
Reason with shapes and their attributes		Cycle	$\begin{gathered} \text { Cycle } \\ 2 \end{gathered}$	$\begin{gathered} \text { Cycle } \\ 3 \end{gathered}$	$\begin{gathered} \text { Cycle } \\ 4 \end{gathered}$	$\begin{gathered} \text { Cycle } \\ 5 \end{gathered}$	$\begin{gathered} \text { Cycle } \\ 6 \end{gathered}$	Cycle	$\begin{gathered} \text { Cycle } \\ 8 \end{gathered}$
1	Recognize and draw shapes having specified attributes, such as a given number of angles or a given number of equal faces. Identify triangles, quadrilaterals, pentagons, hexagons, and cubes.	\bigcirc	\bigcirc	\bigcirc	\bigcirc				
2	Partition a rectangle into rows and columns of same-size squares and count to find the total number of them.	-	\bigcirc						

Geometry		3.G							
Reason with shapes and their attributes		Cycle	Cycle	Cycle	Cycle	$\begin{gathered} \text { Cycle } \\ \hline \end{gathered}$	Cycle	Cycle	Cycle 8
1	Understand that shapes in different categories (e.g., rhombuses, rectangles, and others) may share attributes (e.g., having four sides), and that the shared attributes can define a larger category (e.g., quadrilaterals). Recognize rhombuses, rectangles, and squares as examples of quadrilaterals, and draw examples of quadrilaterals that do not belong to any of these subcategories.					\bigcirc	\bigcirc	\bigcirc	\bigcirc
2	Partition shapes into parts with equal areas. Express the area of each part as a unit fraction of the whole. For example, partition a shape into 4 parts with equal area, and describe the area of each part as $1 / 4$ of the area of the shape.			\bigcirc					

Operations and Algebraic Thinking

Represent and solve problems involving multiplication and division.		Cycle	$\begin{gathered} \text { Cycle } \\ 2 \end{gathered}$	$\underset{3}{\text { Cycle }}$	$\begin{gathered} \text { Cycle } \\ \hline \end{gathered}$	$\begin{gathered} \text { Cycle } \\ 5 \end{gathered}$	$\begin{gathered} \text { Cycle } \\ 6 \end{gathered}$	$\begin{gathered} \text { Cycle } \\ 7 \end{gathered}$	$\begin{gathered} \text { Cycle } \\ 8 \end{gathered}$
1	Interpret products of whole numbers, e.g., interpret 5×7 as the total number of objects in 5 groups of 7 objects each. For example, describe a context in which a total number of objects can be expressed as 5×7.								
2	Interpret whole-number quotients of whole numbers, e.g., interpret $56 \div 8$ as the number of objects in each share when 56 objects are partitioned equally into 8 shares, or as a number of shares when 56 objects are partitioned into equal shares of 8 objects each. For example, describe a context in which a number of shares or a number of groups can be expressed as $56 \div 8$.								
3	Use multiplication and division within 100 to solve word problems in situations involving equal groups, arrays, and measurement quantities, e.g., by using drawings and equations with a symbol for the unknown number to represent the problem.								
4	Determine the unknown whole number in a multiplication or division equation relating three whole numbers. For example, determine the unknown number that makes the equation true in each of the equations $8 \times ?=48,5=\square \div 3,6 \times 6=$? .	\bigcirc		\bigcirc		\bigcirc	\bigcirc		\bigcirc

